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A new numerical  method for the determination of thermokinetics is proposed. This 
is based on the spectral resolution of a thermal  curve into the basic set of unit  rectan- 
gular pulse curves orthogonalized by L(Swdin's t ransformation.  A numerical  example 
shows that  the present method can be successfully applied to experimental curves. 

The search for a method of interpreting the readings of temperature from a cal- 
orimeter, i.e. of re-creating from them the thermal effects formed in the calorim- 
eter, is still an open problem. On the whole, the best results are ensured at pres- 
ent by two methods: the optimization method proposed by Utzig [1 ] and the 
harmonic analysis method of Navarro [2]. The first of these methods assumes 
that the effect formed can be approximated by a step function (each step has the 
width of one sampling period). The optimization method utilizes the principle of 
the linear dependence of temperature on the magnitude of the thermal pulse formed 
in the calorimeter and approximates the thermal curve (T) under investigation by 
the sum of the curves of individual rectangular impulses (TD) of unit energy: 

M 
T(i) ~ T'(i) = ~ cjT3i(i), i =  1 , . . . , N ,  M <_N (1) 

j = l  

where i denotes the successive points in the curve and TDj(i) is the i-th point in 
the curve which corresponds to a single unit pulse formed in the calorimeter at 
the j-th moment of time. The coefficients ej arise from the minimalization of the 
difference between curves T and T'. In the summation in Eq. (1) the number of 
components can be equal to or smaller than the number of points in curve T, 
and in principle it should contain as many functions TD as would ensure that the 
rectangular pulses corresponding to them would permit full approximation of the 
thermal effect. The weakness of the optimization method is the difficulty of mini- 
malizing a function of many parameters. 

The method of harmonic analysis gives results comparable to those obtained 
by the optimization method and consists in transforming T and TD by the Fourier 
transform into a frequency representation. In this representation a convolution 
of functions is transformed into an ordinary product. This permits the calculation 
of the Fourier transform of the effect formed in the calorimeter as a quotient of 
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the corresponding transforms, and thus also of the effect itself. The main disadvan- 
tage of this method is the necessity of measuring the curve up to the return of  the 
thermal equilibrium state in the calorimeter. 

The present paper proposes a new method of identifying the thermal effect in 
the calorimeter, which uses approximation (1) and replaces the process of optim- 
ization of  the coefficient cj by a spectral decomposition into orthogonalized func- 
tions TDj. This decomposition resembles decomposition of a thermal curve into 
trigonometric functions in the harmonic method and in a certain sense constitutes 
a generalization of that method. 

Description of the method 

Let us assume that we have a curve T(i) (i = 1 . . . . .  N) of the thermal effect 
and a curve TD(i) (i = 1 . . . . .  N) of a unit rectangular pulse. Having TD, we 
generate the set {TDj} (j  = 1 . . . .  , m) by adding j-1 additional initial zero points 
and subtracting the same number of final points. We then apply an orthogonaliza- 
tion and normalization of the set of  functions {TDj} over the interval (0, Nd) 
(d being the sampling period) and obtain a new set of functions {TDNi}, the ortho- 
gonality :condition being as follows: 

TDNk(i) " TDN~(i) " d = 
i = l  0 

The sum (2) corresponds to the integral 

= l , k , t = l , . .  M (2) 
k r  "' 

Na 

J" TDNk(t) " TDNi(t)dt which is the 
0 

scalar product of the Hilbert space spanned by the set of functions {TDNj}. 
We can obtain the set of orthogonal functions {TDNi} from the set {TDj} 

in many different ways. However, the procedure proposed by L/Swdin [3] and 
often applied in quantum chemistry calculations is particularly useful in the pres- 
ent method, since it gives at set of orthogonal functions which maximally resem- 
bles the set of orthogonalized functions, i.e. the quantity 

Z TDNj (t). TDj(t)dt) _~ . TDNj(i)'TD~(i)" d 
j = l  t 0 j = l  i'---~al 

reaches its maximum. 
The scheme of L6wdin's method is as follows: We form a matrix S which, by 

a quantum analogy, we can call the matrix of overlap integrals. The element 
Ski of the matrix is defined as follows: 

N 

(S)kl = Z TDk(i)" TD~(i). d. (3) 
i = 1  

We diagonalize the matrix S: 
C a`. S ' C =  V (4) 
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where the matrix C is the matrix of eigenvectors, C T is the transposition of C, 
and the matrix V is the diagonal matrix of the eigenvalues. 

We then calculate the matrix S-�89 defined as follows: 

S - ~ =  C T" V - ~ ' C  (5) 

where V -~ is the diagonal matrix obtained from matrix V by replacing each eigen- 
value by the square root of its inverse, i.e. 

1 (V-�89 ~/(~jj. (6) 

The matrix S-�89 is the required matrix of the coefficients of the expansions of 
the set of functions {TDNj} into functions from the set {TDj), i.e. 

M 

TDNj = ~ (S )~j. TD k. (7) 
k = l  

The fulfilment of the orthonormality condition of the set of functions {TDNj} 
can thus be writen as follows: 

(S- ~)T. S " S-  ~ = 1 (8) 

where 1 denotes the unit matrix. 
Having the set of functions {TDNj}, we expand the thermal curve T on the 

basis of these functions: 
M 

T(i) = ~ cNj. TDNj(i). (9) 
j = l  

The fact that it is an orthogonal set makes it easy to find the expansion coefficient: 

N 

cN i =- ~, T(i) �9 TDNj(i) " d, j = 1 . . . .  , M (10) 

Incidentally, the orthogonalization was needed in order to make it possible to use 
this chance of expressing the coefficients as overlap integrals of the thermal curve 
with the functions of  the basic set. 

Equations (1) and (9) are analogous since they both represent a decomposition 
of the thermal curve into basic sets of known functions, the difference being that 
in Eq. (9) they are orthogonal over the interval of  time covered by the curve. 
The coefficients c of Eq. (1) are still required, whereas the coefficients eN of Eq. 
(9) are already calculated in Eq. (10). However, since we know the expansion of 
functions TDNj into functions TDj from Eq. (7), it is easy to find the coefficients 
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c too, namely: 
M 

cj~- ~ cNk'(S-~)i ~ j =  1, . . . ,  M. (11) 
k=l  

The coefficients c give us an approximation of the profile of the thermal effect 
formed in the calorimeter. 

Numerical example 

For verification of the proposed method, use was made of calorimetric data of 
very good quality produced by a Spanish group for the calorimetric competition 
organized for comparison of the quality of different, thermal pulse identification 
methods, which took place in Cadarache in 1979 [4]. Both the curve of the unit 
rectangular pulse with the width of the sampling period (d = 1.88364 s) and that 
of the verifying pulse contained 45 points. The verifying pulse consisted of three 
rectangular pulses of increasing length (2d, 4d and 8d) and decreasing amplitude 
(100 : 10 : 1), and together with the intervals between these pulses it lasted 28d 
seconds. Thus, the set of 40 functions {TDj} which was used for the curve of the 
verifying pulse. In the first step of the procedure a new set (TDNi} was obtained 
through L6wdin's orthogonalization. No difficulties were encountered in diagonal- 
izing the matrix S, in spite of a considerable overlap of the functions {TDj}. 
Figure 1 shows the curve of the first three functions of the basic set {TDNi} and 

& 
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A t= Ld 

~ TON3(') 

TDNzD) 

Fig. 1. The shape of therrnogram TD1 of the unit  rectangular puls (part  a) and three first 
orthogonalized thermograms TDN1 �9 TDN~ and T D N  a t a r t  b) 
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the first of  the set {TDj}. It can be seen that forcing orthogonality considerably 
deforms functions {TD}. 

l',lext, as a verification of the method, calculations were carried out on TD12, 
as the curve to be analyzed, i.e. the curve of  a unit rectangular pulse of  width d, 
formed in the calorimeter at the moment 12d. As regards the value at each point 
up to the eighth significant figure, the results obtained were in full agreement with 
the shape of the pulse whose curve was TDI=. 

A calculation was then performed for the curve of the series of  rectangular 
pulses mentioned above. This calculation is a very strong test for the method. 
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Fig, 2. Thermal puls reconstruction consisted of three rectangular pulses of the durat ion 2d~ 
4d and  8d and  of  decreasing ampli tude (of the ratio 100 : 10 : 1) shown by the fat line in 
the picture. The following notat ion has been used to illustrate the results of the different m e t h -  
ods: �9 for the optimization method;  �9 for  harmonic  method;  and  the fine line for t h e  
present method. The results of the optimization and harmonic  method as well as calorimetric= 

data have been kindly made available to me by the author  of Pet'. 4 

3* J. Thermal Anal. 22, 1981 



204 ADAMOW][CZ: T H E R M A L  CURVE INTERPRETATION 

The results of  the calculations are shown in Fig. 2, together with a comparison 
with the results of the optimization method and the method of harmonic anal- 
ysis. The quality of  the results in all three methods is similar. 

Conclusion 

Accordingly, the method proposed in this paper for the analysis of a thermal 
curve by its spectral decomposition into curves of rectangular unit pulses gives 
similar results to those obtained by the two most effective methods used in calorim- 
etry at present. Although the proposed method is based on the same approxima- 
tion as the optimization method, it avoids the cumbersome process of  optimiza- 
tion. What is more, it does not require so many points in the curve as does the 
method of harmonic analysis, The time of calculating the example quoted in this 
paper was only a few seconds on the CDC6600 computer. Limitations of applica- 
bility of  the method presented here could arise in the stage of diagonalization; 
experience in quantum physics calculations could be very helpful here. 
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ZUSAMMENFASSUNG - -  Eine neue numerische Methode zur Bestimmung von Thermokinetika 
wird vorgeschlagen. Sie beruht auf der spektralen Aufl6sung einer thermischen Kurve in die 
Grundfolge yon Einheiten rechteckiger Pulskurven, welche durch eine LSwdins Transforma- 
tion orthogonalisiert worden sind. Ein numerisches Beispiel zeigt, dass diese Methode bei 
experimentellen Kurven mit Erfolg eingesetzt werden kann. 

Pe31oMe - -  I Ipe~no>reI~  HOBM~I ~II~C.rleHHblI~ MeTO~I o r tpe~e :~en r~  TepMOKl~HeranecK~tX n a p a M e T -  
p o p  MeTOlI OCHOBaH Ha c n e r T p a z t b g o M  pa3~e~egr~r~ TepMHtIr gpI, IBO~ Ha OCHOBI-IBIe FpylqIIbi 
KpHBlblX C Hp~IMOyFOYff:,HBIM 6I~eHl, IeM I~I rlpflMOyFO.rtbHOCTb KOTOpBIX 6~,zna ocy~ecTByleHa  c 
rtoMo~Ar~to f I6B~i~H-npeo6pa3oBaHrr~ ,  qr~cne~H~,le npr~Mepr~i r ~ o K a 3 a ~ ,  tITO MeTO~ Moz~eT 6b~Tr~ 

y c n e m r ~ o  npr~Mene~ r 9KeI/epHMeHTaJIBHbIM KpJffBBIM. 
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